Last updated: 2023-12-20

Checks: 7 0

Knit directory: workflowr-policy-landscape/

This reproducible R Markdown analysis was created with workflowr (version 1.7.1). The Checks tab describes the reproducibility checks that were applied when the results were created. The Past versions tab lists the development history.


Great! Since the R Markdown file has been committed to the Git repository, you know the exact version of the code that produced these results.

Great job! The global environment was empty. Objects defined in the global environment can affect the analysis in your R Markdown file in unknown ways. For reproduciblity it’s best to always run the code in an empty environment.

The command set.seed(20220505) was run prior to running the code in the R Markdown file. Setting a seed ensures that any results that rely on randomness, e.g. subsampling or permutations, are reproducible.

Great job! Recording the operating system, R version, and package versions is critical for reproducibility.

Nice! There were no cached chunks for this analysis, so you can be confident that you successfully produced the results during this run.

Great job! Using relative paths to the files within your workflowr project makes it easier to run your code on other machines.

Great! You are using Git for version control. Tracking code development and connecting the code version to the results is critical for reproducibility.

The results in this page were generated with repository version a30bb03. See the Past versions tab to see a history of the changes made to the R Markdown and HTML files.

Note that you need to be careful to ensure that all relevant files for the analysis have been committed to Git prior to generating the results (you can use wflow_publish or wflow_git_commit). workflowr only checks the R Markdown file, but you know if there are other scripts or data files that it depends on. Below is the status of the Git repository when the results were generated:


Ignored files:
    Ignored:    .DS_Store
    Ignored:    .RData
    Ignored:    .Rhistory
    Ignored:    .Rproj.user/
    Ignored:    data/.DS_Store
    Ignored:    data/original_dataset_reproducibility_check/.DS_Store
    Ignored:    output/.DS_Store
    Ignored:    output/Figure_3B/.DS_Store
    Ignored:    output/created_datasets/.DS_Store

Untracked files:
    Untracked:  gutenbergr_0.2.3.tar.gz

Unstaged changes:
    Modified:   Policy_landscape_workflowr.R
    Modified:   data/original_dataset_reproducibility_check/original_cleaned_data.csv
    Modified:   data/original_dataset_reproducibility_check/original_dataset_words_stm_5topics.csv
    Modified:   output/Figure_3A/Figure_3A.png
    Modified:   output/created_datasets/cleaned_data.csv

Note that any generated files, e.g. HTML, png, CSS, etc., are not included in this status report because it is ok for generated content to have uncommitted changes.


These are the previous versions of the repository in which changes were made to the R Markdown (analysis/7_For_and_not_for_profit_comparison_part_2.Rmd) and HTML (docs/7_For_and_not_for_profit_comparison_part_2.html) files. If you’ve configured a remote Git repository (see ?wflow_git_remote), click on the hyperlinks in the table below to view the files as they were in that past version.

File Version Author Date Message
html 5c836ab zuzannazagrodzka 2023-12-07 Build site.
Rmd 8a502c9 zuzannazagrodzka 2023-12-07 editing text
html 9fec406 zuzannazagrodzka 2023-12-04 Build site.
html c494066 zuzannazagrodzka 2023-12-02 Build site.
Rmd 0f40512 zuzannazagrodzka 2023-12-02 Update the file paths for all analysis and figures
Rmd 4735075 zuzannazagrodzka 2023-12-02 A new script that compares journals (variables: profit and access). Dictionary analysis, figures created

There are questions we additionally addressed in the manuscript (part 2)

  • What language do for-profit OA, for-profit nonOA, not-for-profit nonOA and not-for-profit OA journals use in their mission statements and aims?
  • What organisations use more common language to the UNESCO Recommendations in Open Science and which use business words?

We conducted the same language analysis that were conducted on the main stakeholders groups to compare for-profit OA, for-profit nonOA, not-for-profit nonOA and not-for-profit OA journals.

The lists of the journals belonging to four categories we identified:

  • for_profit_no_oa (N = 11): “BioSciences”, “Biological Conservation”, “Conservation Biology”, “Ecological Applications”,“Ecology Letters”, “Ecology”, “Frontiers in Ecology and the Environment”, “Global Change Biology”, “Journal of Applied Ecology”, “Nature Ecology and Evolution”, “Trends in Ecology & Evolution”

  • no_profit_no_oa (N = 5): “American Naturalist”, “Annual Review of Ecology Evolution and Systematics”, “Evolution”, “Philosophical Transactions of the Royal Society B”, “Proceedings of the Royal Society B Biological Sciences”

  • for_profit_oa (N = 8): “Arctic, Antarctic, and Alpine Research”, “Biogeosciences”, “Conservation Letters”, “Diversity and Distributions”, “Ecology and Evolution”, “Evolutionary Applications”, “Neobiota”, “PeerJJournal”

  • no_profit_oa (N = 6): “Ecology and Society”, “Evolution Letters”, “Frontiers in Ecology and Evolution”, “Plos Biology”, “Remote Sensing in Ecology and Conservation”, “eLifeJournal”

R Step and Packages

# Clearing R
rm(list=ls())

# Libraries used for text/data analysis
library(tidyverse) 
library(dplyr)
library(tidytext)

# Libraries used to create plots
library(ggplot2)

# Library to create a table when converting to html
library("kableExtra") 

# Library to read an arrow file
library(arrow)

Import data

add column based on the name of the journal if its OA run by for profit or not-for-profit:

  • for_profit_no_oa: “BioSciences”, “Biological Conservation”, “Conservation Biology”, “Ecological Applications”,“Ecology Letters”, “Ecology”, “Frontiers in Ecology and the Environment”, “Global Change Biology”, “Journal of Applied Ecology”, “Nature Ecology and Evolution”, “Trends in Ecology & Evolution”

  • no_profit_no_oa: “American Naturalist”, “Annual Review of Ecology Evolution and Systematics”, “Evolution”, “Philosophical Transactions of the Royal Society B”, “Proceedings of the Royal Society B Biological Sciences”

  • for_profit_oa: “Arctic, Antarctic, and Alpine Research”, “Biogeosciences”, “Conservation Letters”, “Diversity and Distributions”, “Ecology and Evolution”, “Evolutionary Applications”, “Neobiota”, “PeerJJournal”

  • no_profit_oa: “Ecology and Society”, “Evolution Letters”, “Frontiers in Ecology and Evolution”, “Plos Biology”, “Remote Sensing in Ecology and Conservation”, “eLifeJournal”

Importing data

# Importing dataset created in "1a_Data_preprocessing.Rmd"
# df_corpuses <- read.csv(file = "./output/created_datasets/cleaned_data.csv")

# Importing dataset that we originally created and used in our analysis
df_corpuses <- read_feather(file = "./data/original_dataset_reproducibility_check/original_cleaned_data.arrow")

data_words <- df_corpuses

# Dictionary data 
# Importing dictionary data that we originally created and used in our analysis
all_dict <- read.csv(file = "./data/original_dataset_reproducibility_check/original_freq_dict_total_all.csv")

Data Prep and Cleaning

# Data preparation

# Changing name of the dictionary variable
new_dictionary <- all_dict

## Getting a data set with the words
data_words <- df_corpuses

dim(data_words)
[1] 22822    10
colnames(data_words)
 [1] "txt"           "filename"      "name"          "doc_type"     
 [5] "stakeholder"   "sentence_doc"  "orig_word"     "word_mix"     
 [9] "word"          "org_subgroups"
unique(data_words$org_subgroups)
[1] "advocates"            "funders"              "journals_nonOA"      
[4] "journals_OA"          "publishers_nonProfit" "publishers_Profit"   
[7] "repositories"         "societies"           
# Merging and removing duplicates
data_words <- data_words %>% 
  rename(document = name) %>% 
  select(document, org_subgroups, word) %>% 
  left_join(new_dictionary, by = c("word" = "word")) %>% # merging
  filter(org_subgroups %in% c("journals_nonOA", "journals_OA"))

data <- data_words

# Adding a column with a new variable
data$profit_access <- data$document

data$profit_access[data$profit_access%in% c("BioSciences", "Biological Conservation", "Conservation Biology", "Ecological Applications","Ecology Letters", "Ecology", "Frontiers in Ecology and the Environment", "Global Change Biology", "Journal of Applied Ecology", "Nature Ecology and Evolution", "Trends in Ecology & Evolution")] <- "for_profit_no_oa"

data$profit_access[data$profit_access%in% c("American Naturalist", "Annual Review of Ecology Evolution and Systematics", "Evolution", "Philosophical Transactions of the Royal Society B", "Proceedings of the Royal Society B Biological Sciences")] <- "no_profit_no_oa"

data$profit_access[data$profit_access%in% c("Arctic, Antarctic, and Alpine Research", "Biogeosciences", "Conservation Letters", "Diversity and Distributions", "Ecology and Evolution", "Evolutionary Applications", "Neobiota", "PeerJJournal")] <- "for_profit_oa"

data$profit_access[data$profit_access%in% c("Ecology and Society", "Evolution Letters", "Frontiers in Ecology and Evolution", "Plos Biology", "Remote Sensing in Ecology and Conservation", "eLifeJournal")] <- "no_profit_oa"


# # Check that all rows were replaced
# 
# check <- data
# 
# check <- check %>%
#   select(profit_access) %>%
#   group_by_all() %>%
#   summarise(COUNT = n())
# check

data_words <- data
# Adding a column with the type of journal and word together to allow merging later
data_words$stake_word <- paste(data_words$profit_access, "_", data_words$word)
# Adding a column with a document name and word together to allow merging later
data_words$doc_word <- paste(data_words$document, "_", data_words$word)
# Adding a column that will be used later to calculate the total of unique words in the document (dictionaries without removed words)
data_words$doc_pres <- 1

# Adding two columns that will be used later to calculate the total of unique words in the document (new dictionaries with removed common words)
# Replace NAs with 0 in all absence/presence columns
data_words_ND <- data_words %>%
  mutate_at(vars(present_BUS, present_UNESCO, present_book, sum), ~replace_na(., 0)) # replacing NAs
  
head(data_words_ND,3)
# A tibble: 3 × 12
  document        org_subgroups word  present_in_dict present_BUS present_UNESCO
  <chr>           <chr>         <chr>           <int>       <int>          <int>
1 American Natur… journals_non… ince…               1           0              0
2 American Natur… journals_non… main…              NA           0              0
3 American Natur… journals_non… posi…              NA           0              0
# ℹ 6 more variables: present_book <int>, sum <int>, profit_access <chr>,
#   stake_word <chr>, doc_word <chr>, doc_pres <dbl>
colnames(data_words_ND)
 [1] "document"        "org_subgroups"   "word"            "present_in_dict"
 [5] "present_BUS"     "present_UNESCO"  "present_book"    "sum"            
 [9] "profit_access"   "stake_word"      "doc_word"        "doc_pres"       
## Preparing columns used to creating ternary plots
# Select columns of my interest (stakeholders) and aggregate 
  
data_words_ND <- data_words_ND %>% 
  select(document, profit_access, word, present_BUS, present_UNESCO, present_book, doc_pres, sum) # selecting columns, sum - column with the information about in how many dictionaries a certain word occurs

df_sum_pres_ND <- aggregate(x = data_words_ND[,4:8], by = list(data_words_ND$document), FUN = sum, na.rm = TRUE)
  
# By doing aggregate I lost info about the org_subgroups the doc come from, I want to add it
df_doc_ord <- data_words_ND %>% 
  select(document, profit_access) %>% 
  distinct(document, .keep_all = TRUE)
  
df_sum_pres_ND <- df_sum_pres_ND %>% 
  left_join(df_doc_ord, by = c("Group.1" = "document")) %>% 
  rename(document = Group.1)

# Creating % columns in a new df_sum_proc_ND data frame 
df_sum_proc_ND <- df_sum_pres_ND
# View(df_sum_proc_ND)

df_sum_proc_ND$proc_BUS <-df_sum_proc_ND$present_BUS/df_sum_proc_ND$doc_pres*100
df_sum_proc_ND$proc_UNESCO <- df_sum_proc_ND$present_UNESCO/df_sum_proc_ND$doc_pres*100
df_sum_proc_ND$proc_book <- df_sum_proc_ND$present_book/df_sum_proc_ND$doc_pres*100


# Additional information about the data
# Stakeholders (2 from each of the stakeholders) that shared the highest no of words with UNESCO recommendation

UNESCO_stak_top <- df_sum_proc_ND %>% 
  group_by(profit_access) %>% 
  arrange(desc(proc_UNESCO)) %>% 
  slice_head(n=2) %>% 
  select(profit_access, document, proc_UNESCO)

UNESCO_stak_top %>% 
  kbl(caption = "Stakeholders that shared the higest no of words with UNESCO recommendation:") %>% 
  kable_classic("hover", full_width = T)
Stakeholders that shared the higest no of words with UNESCO recommendation:
profit_access document proc_UNESCO
for_profit_no_oa Ecology Letters 9.677419
for_profit_no_oa Frontiers in Ecology and the Environment 8.411215
for_profit_oa Conservation Letters 8.823529
for_profit_oa Diversity and Distributions 7.009346
no_profit_no_oa Evolution 3.030303
no_profit_no_oa Proceedings of the Royal Society B Biological Sciences 2.678571
no_profit_oa Frontiers in Ecology and Evolution 13.636364
no_profit_oa Remote Sensing in Ecology and Conservation 6.796117
# Stakeholders (2 from each of the stakeholders) that shared the highest no of words with business dictionary

business_stak_top <- df_sum_proc_ND %>% 
  group_by(profit_access) %>% 
  arrange(desc(proc_BUS)) %>% 
  slice_head(n=2) %>% 
  select(profit_access, document, proc_BUS)

business_stak_top %>% 
  kbl(caption = "Stakeholders that shared the higest no of words with business dictionary:") %>% 
  kable_classic("hover", full_width = T)
Stakeholders that shared the higest no of words with business dictionary:
profit_access document proc_BUS
for_profit_no_oa Ecology 8.212560
for_profit_no_oa Global Change Biology 7.142857
for_profit_oa Biogeosciences 5.917160
for_profit_oa Evolutionary Applications 5.421687
no_profit_no_oa Evolution 21.212121
no_profit_no_oa Annual Review of Ecology Evolution and Systematics 8.108108
no_profit_oa Evolution Letters 6.349206
no_profit_oa Remote Sensing in Ecology and Conservation 5.825243
# Stakeholders (2 from each of the stakeholders) that shared the highest no of words with book dictionary (control)

book_stak_top <-  df_sum_proc_ND %>% 
  group_by(profit_access) %>% 
  arrange(desc(proc_book)) %>% 
  slice_head(n=2) %>% 
  select(profit_access, document, proc_book)

book_stak_top %>% 
  kbl(caption = "Stakeholders that shared the higest no of words with book dictionary (control):") %>% 
  kable_classic("hover", full_width = T)
Stakeholders that shared the higest no of words with book dictionary (control):
profit_access document proc_book
for_profit_no_oa Conservation Biology 18.81188
for_profit_no_oa Trends in Ecology & Evolution 18.07229
for_profit_oa Ecology and Evolution 17.82407
for_profit_oa Arctic, Antarctic, and Alpine Research 15.75092
no_profit_no_oa Annual Review of Ecology Evolution and Systematics 16.21622
no_profit_no_oa Philosophical Transactions of the Royal Society B 12.61261
no_profit_oa Evolution Letters 22.22222
no_profit_oa Remote Sensing in Ecology and Conservation 20.38835

Creating graphs

no <- nrow(df_sum_proc_ND)
no
[1] 30
# Plotting them separately book
df_sum_proc_ND_book = data.frame(
  document = rep(df_sum_proc_ND$document,1),
  profit_access = rep(df_sum_proc_ND$profit_access,1),
  type = c(rep("Book",no)),
  perc = c(df_sum_proc_ND$proc_book),
  perc2 = c(df_sum_proc_ND$proc_book))

sum_df_sum_proc_ND_book = 
  df_sum_proc_ND_book %>%
  group_by(profit_access, type) %>%
  # dplyr::summarise(perc = mean(perc), SD = sd(perc2))
  dplyr::summarise(perc = median(perc), SD = sd(perc2))
`summarise()` has grouped output by 'profit_access'. You can override using the
`.groups` argument.
fig_book <- ggplot() +
  geom_point(data = df_sum_proc_ND_book, aes(x = perc, y = profit_access), alpha = 0.1, position = position_jitter()) +
  geom_pointrange(data = sum_df_sum_proc_ND_book, aes(x = perc, xmin = perc - SD, xmax = perc + SD, y = profit_access)) +
  facet_grid(type~.) +
  labs(x = "Document words occuring in dictionary (%)", y = "") +
  scale_colour_discrete(guide = "none") +
  theme_classic()

fig_book

Version Author Date
c494066 zuzannazagrodzka 2023-12-02
# Saving the figure
# UNCOMMENT TO SAVE THE FIGURE
figure_name <- paste0("./output/Figure_4C/Figure_4C_book.png")
ggsave(filename = figure_name, fig_book  + theme_bw(base_size = 5),
     width = 10, height = 5, dpi = 600, units = "in", device='png')


# Plotting them separately Business
df_sum_proc_ND_BUS = data.frame(
  document = rep(df_sum_proc_ND$document,1),
  profit_access = rep(df_sum_proc_ND$profit_access,1),
  type = c(rep("Business",no)),
  perc = c(df_sum_proc_ND$proc_BUS),
  perc2 = c(df_sum_proc_ND$proc_BUS))

sum_df_sum_proc_ND_BUS = 
  df_sum_proc_ND_BUS %>%
  group_by(profit_access, type) %>%
  # dplyr::summarise(perc = mean(perc), SD = sd(perc2))
  dplyr::summarise(perc = median(perc), SD = sd(perc2))
`summarise()` has grouped output by 'profit_access'. You can override using the
`.groups` argument.
fig_bus <- ggplot() +
  geom_point(data = df_sum_proc_ND_BUS, aes(x = perc, y = profit_access), alpha = 0.1, position = position_jitter()) +
  geom_pointrange(data = sum_df_sum_proc_ND_BUS, aes(x = perc, xmin = perc - SD, xmax = perc + SD, y = profit_access)) +
  facet_grid(type~.) +
  labs(x = "Document words occuring in dictionary (%)", y = "") +
  scale_colour_discrete(guide = "none") +
  theme_classic()

fig_bus

Version Author Date
c494066 zuzannazagrodzka 2023-12-02
# Saving the figure
# UNCOMMENT TO SAVE THE FIGURE
figure_name <- paste0("./output/Figure_4C/Figure_4C_bus.png")
ggsave(filename = figure_name, fig_bus  + theme_bw(base_size = 5),
     width = 10, height = 5, dpi = 600, units = "in", device='png')



# Plotting them separately UNESCO
df_sum_proc_ND_UNESCO = data.frame(
  document = rep(df_sum_proc_ND$document,1),
  profit_access = rep(df_sum_proc_ND$profit_access,1),
  type = c(rep("UNESCO",no)),
  perc = c(df_sum_proc_ND$proc_UNESCO),
  perc2 = c(df_sum_proc_ND$proc_UNESCO))

sum_df_sum_proc_ND_UNESCO = 
  df_sum_proc_ND_UNESCO %>%
  group_by(profit_access, type) %>%
  # dplyr::summarise(perc = mean(perc), SD = sd(perc2))
  dplyr::summarise(perc = median(perc), SD = sd(perc2))
`summarise()` has grouped output by 'profit_access'. You can override using the
`.groups` argument.
fig_unesco <- ggplot() +
  geom_point(data = df_sum_proc_ND_UNESCO, aes(x = perc, y = profit_access), alpha = 0.1, position = position_jitter()) +
  geom_pointrange(data = sum_df_sum_proc_ND_UNESCO, aes(x = perc, xmin = perc - SD, xmax = perc + SD, y = profit_access)) +
  facet_grid(type~.) +
  labs(x = "Document words occuring in dictionary (%)", y = "") +
  scale_colour_discrete(guide = "none") +
  theme_classic()

fig_unesco

Version Author Date
c494066 zuzannazagrodzka 2023-12-02
# Saving the figure
# UNCOMMENT TO SAVE THE FIGURE
figure_name <- paste0("./output/Figure_4C/Figure_4C_unesco.png")
ggsave(filename = figure_name, fig_unesco  + theme_bw(base_size = 5),
     width = 10, height = 5, dpi = 600, units = "in", device='png')

Session information

sessionInfo()
R version 4.3.1 (2023-06-16)
Platform: x86_64-apple-darwin20 (64-bit)
Running under: macOS Monterey 12.6

Matrix products: default
BLAS:   /Library/Frameworks/R.framework/Versions/4.3-x86_64/Resources/lib/libRblas.0.dylib 
LAPACK: /Library/Frameworks/R.framework/Versions/4.3-x86_64/Resources/lib/libRlapack.dylib;  LAPACK version 3.11.0

locale:
[1] en_US.UTF-8/en_US.UTF-8/en_US.UTF-8/C/en_US.UTF-8/en_US.UTF-8

time zone: Europe/London
tzcode source: internal

attached base packages:
[1] stats     graphics  grDevices utils     datasets  methods   base     

other attached packages:
 [1] arrow_13.0.0.1   kableExtra_1.3.4 tidytext_0.4.1   lubridate_1.9.3 
 [5] forcats_1.0.0    stringr_1.5.0    dplyr_1.1.3      purrr_1.0.2     
 [9] readr_2.1.4      tidyr_1.3.0      tibble_3.2.1     ggplot2_3.4.3   
[13] tidyverse_2.0.0  workflowr_1.7.1 

loaded via a namespace (and not attached):
 [1] gtable_0.3.4      xfun_0.40         bslib_0.5.1       processx_3.8.2   
 [5] lattice_0.21-8    callr_3.7.3       tzdb_0.4.0        vctrs_0.6.3      
 [9] tools_4.3.1       ps_1.7.5          generics_0.1.3    fansi_1.0.4      
[13] highr_0.10        janeaustenr_1.0.0 pkgconfig_2.0.3   tokenizers_0.3.0 
[17] Matrix_1.5-4.1    assertthat_0.2.1  webshot_0.5.5     lifecycle_1.0.3  
[21] farver_2.1.1      compiler_4.3.1    git2r_0.32.0      textshaping_0.3.6
[25] munsell_0.5.0     getPass_0.2-2     httpuv_1.6.11     htmltools_0.5.6  
[29] SnowballC_0.7.1   sass_0.4.7        yaml_2.3.7        later_1.3.1      
[33] pillar_1.9.0      jquerylib_0.1.4   whisker_0.4.1     cachem_1.0.8     
[37] tidyselect_1.2.0  rvest_1.0.3       digest_0.6.33     stringi_1.7.12   
[41] labeling_0.4.3    rprojroot_2.0.3   fastmap_1.1.1     grid_4.3.1       
[45] colorspace_2.1-0  cli_3.6.1         magrittr_2.0.3    utf8_1.2.3       
[49] withr_2.5.1       scales_1.2.1      promises_1.2.1    bit64_4.0.5      
[53] timechange_0.2.0  rmarkdown_2.25    httr_1.4.7        bit_4.0.5        
[57] ragg_1.2.5        hms_1.1.3         evaluate_0.21     knitr_1.44       
[61] viridisLite_0.4.2 rlang_1.1.1       Rcpp_1.0.11       glue_1.6.2       
[65] xml2_1.3.5        svglite_2.1.2     rstudioapi_0.15.0 jsonlite_1.8.7   
[69] R6_2.5.1          systemfonts_1.0.4 fs_1.6.3         

sessionInfo()
R version 4.3.1 (2023-06-16)
Platform: x86_64-apple-darwin20 (64-bit)
Running under: macOS Monterey 12.6

Matrix products: default
BLAS:   /Library/Frameworks/R.framework/Versions/4.3-x86_64/Resources/lib/libRblas.0.dylib 
LAPACK: /Library/Frameworks/R.framework/Versions/4.3-x86_64/Resources/lib/libRlapack.dylib;  LAPACK version 3.11.0

locale:
[1] en_US.UTF-8/en_US.UTF-8/en_US.UTF-8/C/en_US.UTF-8/en_US.UTF-8

time zone: Europe/London
tzcode source: internal

attached base packages:
[1] stats     graphics  grDevices utils     datasets  methods   base     

other attached packages:
 [1] arrow_13.0.0.1   kableExtra_1.3.4 tidytext_0.4.1   lubridate_1.9.3 
 [5] forcats_1.0.0    stringr_1.5.0    dplyr_1.1.3      purrr_1.0.2     
 [9] readr_2.1.4      tidyr_1.3.0      tibble_3.2.1     ggplot2_3.4.3   
[13] tidyverse_2.0.0  workflowr_1.7.1 

loaded via a namespace (and not attached):
 [1] gtable_0.3.4      xfun_0.40         bslib_0.5.1       processx_3.8.2   
 [5] lattice_0.21-8    callr_3.7.3       tzdb_0.4.0        vctrs_0.6.3      
 [9] tools_4.3.1       ps_1.7.5          generics_0.1.3    fansi_1.0.4      
[13] highr_0.10        janeaustenr_1.0.0 pkgconfig_2.0.3   tokenizers_0.3.0 
[17] Matrix_1.5-4.1    assertthat_0.2.1  webshot_0.5.5     lifecycle_1.0.3  
[21] farver_2.1.1      compiler_4.3.1    git2r_0.32.0      textshaping_0.3.6
[25] munsell_0.5.0     getPass_0.2-2     httpuv_1.6.11     htmltools_0.5.6  
[29] SnowballC_0.7.1   sass_0.4.7        yaml_2.3.7        later_1.3.1      
[33] pillar_1.9.0      jquerylib_0.1.4   whisker_0.4.1     cachem_1.0.8     
[37] tidyselect_1.2.0  rvest_1.0.3       digest_0.6.33     stringi_1.7.12   
[41] labeling_0.4.3    rprojroot_2.0.3   fastmap_1.1.1     grid_4.3.1       
[45] colorspace_2.1-0  cli_3.6.1         magrittr_2.0.3    utf8_1.2.3       
[49] withr_2.5.1       scales_1.2.1      promises_1.2.1    bit64_4.0.5      
[53] timechange_0.2.0  rmarkdown_2.25    httr_1.4.7        bit_4.0.5        
[57] ragg_1.2.5        hms_1.1.3         evaluate_0.21     knitr_1.44       
[61] viridisLite_0.4.2 rlang_1.1.1       Rcpp_1.0.11       glue_1.6.2       
[65] xml2_1.3.5        svglite_2.1.2     rstudioapi_0.15.0 jsonlite_1.8.7   
[69] R6_2.5.1          systemfonts_1.0.4 fs_1.6.3